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The fast Fourier Poisson method for calculating Ewald sums 
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(Received 8 April 1994; accepted 5 May 1994) 

The conventional Ewald expression for the electrostatic energy and forces is recast in a form that 
can be evaluated to high accuracy in order N 10g(N) steps using fast Fourier transforms. The fast 
Fourier Poisson method does not rely on interpolation approaches or Taylor/multipole expansions, 
and can be easily integrated with conventional molecular dynamics algorithms. 

INTRODUCTION 

A long standing obstacle to accurate molecular simula
tions concerns proper treatment of long-range electrostatic 
forces. Conventional molecular modeling force fields gener
ally rely on point charge models for atoms and ions, and 
frequently employ periodic boundary conditions to approxi
mate a macroscopic system. Evaluation of all pairwise Cou
lombic interactions using the "minimum image" convention 
requires order N 2 steps, and hence is a limitation for large 
systems. To reduce computational effort to an order N pro
cedure, truncation schemes are typically employed that ne
glect interactions beyond a fixed cutoff. CutotT methods (in
cluding the "minimum image" convention), however, 
ultimately lead to artificial behavior in molecular simulations 
where long-range electrostatic forces playa dominant role in 
the long-time behavior of the system. I

-
3 An alternative 

method is to use Ewald sums4
,5 to evaluate the electrostatic 

potential due to the entire crystal lattice, and thus incorporate 
all the long-range effects. 

Consider a neutral system of N point charges 
ql ,q2, .. ·,qN' at positions rl,r2, ... ,rN' in a unit cell with real 
space lattice vectors aI' a2, and a3' The electrostatic energy 
of the system is defined by the interaction of each point 
charge with all the other point charges in the lattice, 

N N 00 1 N 

E=~ ~ ~ qiqj ~ 'Irij+nl- I ='2 ~ qi'P(rJ, (1) 
i=1 }=1 101=0 ,=1 

where the sum over n is a sum over lattice vectors 
n=nlal +n2a2+n3a3, and 'P is the electrostatic potential. The 
prime symbol indicates the term for which \rij+nl=O is ne
glected. Hence, the potential 'P in Eq. (1) does not include 
the infinite "self-energy" of the point charges, and is not a 
solution of Poisson's equation. Suppose we introduce a lo
calized "screening" charge density around each point charge 
of equal magnitude and opposite sign.5,6 Define the screening 
charge density ps(r) to be the sum of the localized densities. 
For concreteness, we choose the local densities to be spheri
cal Gaussians 

(2) 
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where the positive parameter f3 determines the width of the 
Gaussians. The potential 'P in Eq. (1) can be rewritten 

The first term in Eq. (3), 'Prea!(r), is a sum of short-range 
potentials associated with each point charge and its screening 
density, and can be evaluated in real space. The second term, 

'P . (r.) is the potential associated with the smooth periodic 
reclP l' .. . 

charge density -ps(r) and can be obtamed by solvmg POIS-
son's equation in reciprocal space. The analytic expression 
for the electrostatic energy equation (1) with the choice of 
screening density equation (2) can be written7

,8 

=~ ~ .[ (.~' . ~ erfc(f3l r ij+n\) 
E 2 L.J q, L.J q] L.J Ir +nl 

i=1 j=1 101=0 ij 

+J(D,P,E') 

1 N 

='2 ~ qi[ 'Preal(ri) + 'Predp(ri)] + J(D,P ,E') 
i=1 

(4) 

where V is the volume of the unit cell, erfc (x) is the 
complementary error function, and Ereal and Erecip are the 
real space and reciprocal space components of the Ewald 
energy, respectively. The last term J(D,P ,€') in Eq. (4) cor
rects for the nonuniform field associated with a macroscopic 
(but finite) crystal in a dielectric continuum, and depends on 
the dipole moment D of the unit cell, the shape P of the 
macroscopic crystal, and the external dielectric constant E' .7,8 

This term vanishes for unit cells with zero dipole moment, or 
in the limit E' -+00, The sums in Eq. (4) are over real space 
(n) and reciprocal space (m) lattices, respectively, and are 
rapidly convergent. The parameter f3 adjusts the relative rates 
of convergence, but is otherwise arbitrary. If f3 is chosen 
such that the real space sum is negligible beyond some fixed 
cutoff, r c' evaluation of Eg. (4) becomes an order N2 

procedure.5 Adjusting f3 to optimize computational efficiency 
results in an order N3/2 pro(;edure,9 which is still restrictive 
for large systems. 
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METHOD 

Herein we describe a simple reformulation of Eq. (4) 
that can be evaluated efficiently to high a.ccuracy in order 
N 10g(N) steps. The fast Fourier Poisson (FFP) method uses 
a modified expression for the real space term that can be 
evaluated using a conventional nonbond list in order N steps, 
and a reciprocal space term that can be evaluated using fast 
Fourier transforms (FFfs) in order N 10g(N) steps. The FFP 
method differs from other methods10

-
17 in that it can achieve 

very high accuracy, and does not rely on interpolation tech
niques or Taylor/multipole expansions. 

Consider the potential 'Precip associated with the charge 
density -Ps in Eq. (2). These functions are related by Pois
son's equation V2'PreciP(r) = 47TPs (r) [note V2'PreciP(r) 
= - V2 'PsCr)]. From a computational standpoint, 'Precip can be 
evaluated on a grid using FFrs. The procedure is as follows: 
(1) evaluate 47TPs at the Fourier transform (FT) grid points, 
(2) compute the forward real-complex FFT, (3) multiply the 
transformed components by -(27Tm) -2 (where m is the cor
responding reciprocal space lattice vector), and (4) compute 
the reverse real+-complex FFT to obtain the potential. Steps 
(1) and (3) are order N for a given grid density, whereas 
steps (2) and (4) are order N 10g(N). The gradient compo
nents can be obtained in a similar manner by replacing 
-(27Tm)-2 in step 3 by -iml27Tm2.The above procedure 
results in accurate determination of 'Precip and its -gradient 
components at the FT grid points. Equation (4), however, 
requires knowing 'Precip at the point charge positions 
r[,r2, ... ,rN' Fortunately, we can recast Eq. (4) in a form that 
does not have this restriction. In the same Epirit as the sepa
ration of the potential in Eq. (3), separate the reciprocal 
space energy term, 

(5) 

where we have introduced the notation for the point charge 
density p(r)=2:7=IQi8(r-rj). The idea is that we replace the 
interaction of each point charge q j with the potential 'Precip by 
the interaction of a Gaussian with the same net charge and at 
the same location, plus a correction (which is exact). In fact, 
one term in the correction exactly cancels the real space term 
inEq. (4). The results'for the energy expression and force are 

1 N 

E=-~ 
2 i-I j=l 

(6a) 

and 

j=! 

+ f p~(r')V 'Precip(r')d3r'- VjJ(D,P,€'). (6b) 

The advantage of Eqs. (6a) and (6b) is that P ... 'Precip, and 
V'Precip are well represented at the FT grid points, hence the 
corresponding integrals can be computed accurately. The real 
space term in Eq. (6a) is modified from Eq. (4) by a factor of 
1IV'2 in the erfc(x) argument. Note that if only the total en
ergy E is desired (and not the potential in real space), the 
integral in Eq. (6a) can be evaluated in reciprocal space 
thereby avoiding a reverse FFT. Evaluation of the integral in 
Eq. (6b) for the force involves a local summation over the FT 
grid since the density p~ of Eq. (2) is highly localized. The 
FFP method is not restricted to orthogonal unit cells, and has 
the advantage that the energy and gradients are continuous 
functions of point charge position. As demonstrated below, 
Eqs. (6a) and (6b) can be evaluated efficiently to high accu
racy using a conventional 9 A cutoff for the real space sums, 
which makes implementation into conventional molecular 
dynamics programs straight forward. 

RESULTS 

The FFP method has been implemented as a series of 
simple self-contained FORTRAN subroutines. Here we exam
ine the accuracy and computational scaling of the method. 
Two systems were chosen to test accuracy: (1) the conven
tional TIP3P water box of Jorgensen et at. 18 and (2) an ionic 
system consisting of ION a + ions and 10 Cl- ions in a 40 A 
cube with 1916 TIP3P waters. Accuracy and timing results 
for several FT grid densities are listed in Table I. Moderate 
accuracy is obtained (10-4 relative force accuracy) with a 
fairly course FT grid (~1.6 A). Very high accuracy 00- 10 

relative force accuracy) can be obtained with a finer grid 
(~0.6 A). In the current implementation, the main cost in 
obtaining high accuracy involves evaluation of the density Ps 
at the local FTgrid points. In all cases a cutoff of 9 A was . 
used in the real space sums in Eqs. (6a) and (6b). For a given 
cutoff (r c), the parameter {3 is determined so that the real 
space term erfc({3r JV'2)/ r c falls below a desired tolerance. 
The screening density around each atom is then evaluated at 
local grid points using a cutoff r; = r clV'2. For any given grid 
density, this procedure scales linearly with the size of the 
system, and hence the overall scaling dependence is 
N 10g(N) resulting from the computation of the FFrs (Fig. 
1); 

CONCLUSION 

The FFP method offers several advantages for calculat
ing long-range electrostatic forces of large systems. Perhaps 
the most attractive is its simplicity. The method does not rely 
on interpolation approaches or on Taylor/multipole expan
sions, and can be integrated into conventional molecular dy~ 

J. Chern. Phys., Vol. 101, No.4, 15 August 1994 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.12.88.146 On: Mon, 22 Sep 2014 18:36:44



3300 D. York and W. Yang: FFP method for calculating Ewald sums 

TABLE 1. Accuracy and timing of the FFP method.' 

Grid (A) f3 rmsE rmscp rmsF CPU 

Water boxb 

1.56 0.502 1.8 X 10-5 i.2XlO-3 4.8XlO-4 2.1 
1.17 0.553 6.8XlO-7 2.2XIO-4 3.8XlO-s 3.2 
0.78 0.687 1.1 X 10-9 3.4XlO-7 7.8xlO-8 7.9 
0.59 0.799 2.5XlO- ll 4.3XlO- 1O 2.3XlO- 1O 18.4 

9A 2.5xlO-2 0.99 8.6XlO-2 0.7 

Ion box" 
1.67 0·~92 1.2XIO-s 7.3XlO-3 2.5xlO-4 18.2 
1.25 0.553 7.3xlO-7 4.2XlO-4 1.6XlO-s 29.1 
0.83 0.69 3.3XIO-9 1.1 X 10-6 5.5XlO-8 83.8 
0.63 0.763. 3.5XlO-ll 6.0XlO-9 2.6XlO- IO 201.6 

9A 1.6xl0-3 0.72 9.6>1:10-3 6.1 
18 A 2.7XlO-2 0.71-. 5.1 X 10-3 45.1 

"Listed are the spacing b~tween f<i'grid points (grid), the parameter f3 (see text), the relative energy error (rmsE): ~(E-E:)21E2, the relative potenti?l error 
(rmscp): ~};i[cp(r)-cP(ri)]2/};icp(ri)2, the relative force error (rmsF): ~};i(fi-fi)2/2.if f, and the CPU time required on an Sal Indigo R4000 Workstation 
(CPU). Hete the energy E, potential cp, and forces fi correspond to the exact quantitieS evaluated using the Ewald method excluding nearest image interactions 
of covalently bonded atoms, and E, cp, and f/ are the corresponding approximate values evaluated with the FFP method. In ali calculations the shape
dependent term JCD,P,E) in Eq. (4) was chosen to be ~ero, corresponding to the commonly employed "tin-foil" "(E'-.oo) boundary conditions. Listed for 
comparison are results obtained using a conventional residue-based nonbond cutoff (rc =9 A, 18 A). 

bBox containing 216 Monte Carlo TIP3P waters; 
''Box containing 10 Na+ and 10 Cl- Ions and 1916 TIP3P waters, relaxed with 1000 steps conjugate gradient energy minimization and lO·ps molecular 
dynamics at 300 K. -

namics codes that use a nonbond list. Moderate accuracy 
(10-4 relative force error) can. be obtained with the FFP 
method very efficiently. High accuracy (10- 10 relative force 
error) can be obtained by using a finer grid (-0.6 A). Finally, 
since the formulation of the FFP approach relies on soiving 
the potential of a smooth periodic charge density, in prin
ciple, the method cal} be generalized to arbitrary charge den
sitiessuch as those encountered in real space electronic 
structure calculations. 
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FIG. 1. Scaling of the FFP method. CPU times for evaluation of the energy 
and gradient are shown for the real space sum (thin solid line), reciprocal 
space sum (thin dotted line), and overall (thick solid line). Timings were 
performed on cubic water boxes (15, 30, 45, 60, 75, and 90 A) using ,I 9 A 
cutoff for the real space sum, and a 1.5 A IT grid spacing (grid density 0.:3 
ptslA3). A Silicon Graphics Iris Indigo R4000 Workstation ~as used for all 
tirriings. 
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